A system for the sustainable management of Lithuanian marine resources using novel surveillance, modeling tools and an ecosystem approach

Catching the moment: data collection, modeling and mapping of herring spawning grounds at the exposed coast

Aleksej Šaškov1*, Sergej Olenin¹, Darius Daunys¹, Martynas Bučas¹, Andrius Šiaulys¹, Johan Näslund²

> ¹ Coastal Research and Planning Institute, Klaipeda University, Lithuania

²AquaBiota Water Research * Corresponding author e-mail: aleks@corpi.ku.lt

Introduction

- The Baltic herring (Clupea harrengus membras) spawns in a wide range of environments, and breading strategy of different populations differs a lot
- The aim of this study was to map herring spawning grounds in the Lithuanian coastal waters
- Previously no detailed herring spawning grounds mapping was performed in this area, and background information was very limited

Background information

· Herring could spawn on variety of aquatic plants. In conditions of very exposed Lithuanian coast, the spawning can not take place at too shallow areas (depth <2m), therefore it was assumed (based on literature) that the best spawning substrate is the red algae Furcelaria lumbricalis.

GEOHAB 2011. Helsinki, May, 3-6, 2011

- A habitat distribution map of F. lumbricalis was available (but not very precise and detailed)
- In earlier SCUBA diving surveys herring eggs were found occasionally on F. lumbricalis at five locations
- In this study for the first field season 54 sampling points were distributed evenly along potentially suitable spawning area

The challenge

- The spawning period is relatively short: eggs remain on the benthic substrate for 3-5 weeks
- · There is no clear indication that the spawning has started
- Herring eggs are hardly detectable by any remote methods: they are semi-transparent and less than 2 mm in diameter
- Only SCUBA
- During the spawning period (April-May): water T = 6-8 °C
- · Low visibility, any kind of weather and sea conditions (wind, rain, waves, strong currents, etc.)
- So... catch the moment!

2009 season, afterwards • So, the 2009 survey showed that distribution of the spawning grounds can not be explained only by presence of Furcellaria • A detailed multibeam bathymetry and Side Scan Sonar sediment map became available for the part of the study area after the 2009 season Data review allowed to formulate a new hypothesis: the distribution of the spawning ground is shaped rather by geomorfological features than by Legend the presence of Furcellaria Side Sca <all other valu F. lumbri

.

Model of choice – Bayesian Probability Maximum Entropy

- Because detected "absences" may be false, presence/absence based models could gave biased results
- The MAXENT software, based on Bayesian Probability Maximum Entropy was used for modeling
- In Bayesian probability, the principle of maximum entropy is a postulate which states that the probability distribution which best represents the current state of knowledge is the one with largest entropy

- East&Northness (from aspect)
- Curvature
- Terrain roughness index 150x150 m (<->rugosity)
- SWM (Isaeus, 2004)
- SWM bathymetry corrected

All in 50 x 50 m grid

Predictor layers at the finer scale ("multibeam area")

- Bathymetry (from multibeam)
- Substrate (classified from Side Scan & the rough map)
- Eastness, Northness (aspect)
- Compass direction (N/E/S/W from aspect)
- Slope
- Curvature
- Terrain roughness index (3 scales)
- Rugosity
- Protection index (2 scales)
- SWM, bathymetry corrected
- 25 x 25 m grid

AKNOWLEDGEMENT

This study was supported by Norwegian Financial Mechanism Programme (Project "A system for the sustainable management of Lithuanian marine resources using novel surveillance, modeling tools and an ecosystem approach:, nr. LT0047) and Republic of Lithuania.

